Contents

Reflections ix
Contents: An INFORMative Assessment Journey Perspective xi
Foreword by Mary Lindquist xiii
Acknowledgments xv

Section I: What Is INFORMative Assessment?
Chapter 1: Beginning an Assessment Journey 3

Section II: What Will I Assess?
Chapter 2: Key Strategies for Making Tough Decisions About “What’s Next?” 15
Chapter 3: Steps to Implementing Clear Learning Targets 53

Section III: How Do I Assess?
Chapter 4: Strategies to Support Oral INFORMative Assessments 81
Chapter 5: Strategies to Support Written INFORMative Assessments 111
Chapter 6: Strategies for Choosing Mathematically Rich Tasks for Instruction and Assessment 137

Section IV: How Can I Support My Students in Assessing Themselves?
Chapter 7: Supporting Student Self-Assessment and Responsibility 167
Contents

Section V: How Do Good Questions Lead to Quality Inferences and Feedback? 205
 Chapter 8: Good Questions Lead to Important Assessment Information 207
 Chapter 9: Assessment to INFORM Inferences and Actionable Feedback 245

Section VI: What Are the Next Steps in an INFORMative Assessment Journey? 277
 Chapter 10: INFORMative Assessment for Long-Term Success 279

National Council of Teachers of Mathematics Assessment 299
 Research Brief: Five “Key Strategies” for Effective Formative Assessment

References 309
Index 323
About the Authors 331
Reflections

1–1: INFORMing My Practice: My Beliefs
2–1: Focus on the Mathematics
2–2: Assessment in a Grade 2 Classroom
2–3: Making Decisions About What to Teach
2–4: Key Questions in Anticipating Students’ Responses to Instruction
2–5: Making Decisions That Support Student Learning
2–6: A New Approach to Scoring Student Work
2–7: INFORMing My Practice: Making Tough Decisions About “What’s Next?”
3–1: Learning Targets to Illustrate Types of Knowledge
3–2: Classifying Problems
3–3: Formalizing Preparation for Instruction and Assessment
3–4: INFORMing My Practice: Looking Back to Plan Ahead
4–1: Making the Most of Interviews
4–2: Tory’s Misunderstanding
4–3: INFORMing My Practice: Gathering Information About Students’ Thinking
5–1: Numbers with Two Fours
5–2: Rainbow Robots
5–3: Comparison of Assessment Methods
5–4: INFORMing My Practice: Using a Variety of Assessments
6–1: Evaluating Tasks
6–2: Plan for Addressing Marika’s Misconceptions
6–3: Fractions of Regions: Task in Three Levels of Difficulty
6–4: INFORMing My Practice: An Action Plan for Tasks
7–1: Evaluating My Current Practice
7–2: Establishing Characteristics of Quality Work with Students
7–3: Improving Responses in Daily Student Work
7–4: Student Self-Assessment of Everyday Work Habits
7–5: Student Self-Assessment of Test-Taking
7–6: Student Error Analysis of Tests
7–7: INFORMing My Practice: Supporting Student Self-Assessment and Responsibility 203
8–1: Writing Probing Questions for a Kindergarten Student 234
8–2: Writing Probing Questions for Fourth-Grade Students 235
8–3: Writing Probing Questions for Sixth-Grade Students 238
8–4: Planning Questions for a Variety of Mathematical Purposes 240
8–5: INFORMing My Practice: Self-Evaluation of Questioning Techniques 242
9–1: Inferences: Using Benchmark Tests Thoughtfully 270
9–2: Giving Actionable Feedback 273
9–3: Creating a Specific Rubric 275
9–4: INFORMing My Practice: Making Inferences, Giving Feedback 276
10–1: What’s in a Grade? The Case of Maia and Marissa 294
10–2: Moving Toward INFORMative Assessment Practices 295
10–3: Mentoring Ms. Hanley 296
10–4: INFORMing My Practice: Final Reflections and Goals 298
Contents: An INFORMative Assessment Journey Perspective

Where We’ve Been . . . Where We’re Going

<table>
<thead>
<tr>
<th>Moving from . . .</th>
<th>Chapter</th>
<th>Moving toward . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching primarily page-by-page from a textbook and covering everything in equal segments</td>
<td>Chapter 2</td>
<td>Using diagnostic assessments to determine what topics need more or less time and which students need extra assistance or additional challenges</td>
</tr>
<tr>
<td>Planning lessons based on general goals and the next topic in the textbook</td>
<td>Chapter 3</td>
<td>Clearly defining learning targets with criteria for their achievement and communicating these to students</td>
</tr>
<tr>
<td>Relying primarily on multiple-choice tests to measure achievement</td>
<td>Chapter 4</td>
<td>Employing a variety of assessment strategies—personal conversations, constructed response and open-ended questions—to identify achievement of learning targets</td>
</tr>
<tr>
<td>Assessing at the end of the week or the end of a unit and using the results primarily to assign grades</td>
<td>Chapter 4</td>
<td>Assessing daily throughout instruction to uncover student thinking and make decisions about instruction</td>
</tr>
<tr>
<td>Providing whole-class instruction with students working individually on the same tasks</td>
<td>Chapter 6</td>
<td>Having students work on tasks chosen to address identified strengths and needs with the whole class, alone, with partners, and in flexible groups</td>
</tr>
</tbody>
</table>

(continued)
Contents: An INFORMative Assessment Journey Perspective

<table>
<thead>
<tr>
<th>Moving from . . .</th>
<th>Chapter</th>
<th>Moving toward . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expecting students to know how to improve their work</td>
<td>Chapter 7</td>
<td>Creating an environment that promotes reflection, self-assessment, and responsibility with rubrics, models, and class discussions that explain quality work</td>
</tr>
<tr>
<td>Showing and telling students the most efficient way to solve problems or to compute</td>
<td>Chapter 6, Chapter 7, Chapter 8</td>
<td>Encouraging students to share solution strategies and facilitating class discussions that move students to efficient algorithms</td>
</tr>
<tr>
<td>Calling on students who have raised their hands and accepting their answers</td>
<td>Chapter 6, Chapter 7, Chapter 8</td>
<td>Calling on a variety of students daily and asking them to justify their answers</td>
</tr>
<tr>
<td>Asking questions that are primarily recall or require yes-or-no responses</td>
<td>Chapter 8</td>
<td>Asking questions to engage students in the task or discussion and questions that probe students’ thinking</td>
</tr>
<tr>
<td>Scoring student responses as right or wrong and giving feedback primarily in the form of grades</td>
<td>Chapter 9</td>
<td>Scoring student work for both the process and the answer and providing actionable feedback to inform the student on how to improve</td>
</tr>
<tr>
<td>Defining successful teaching as having a large percentage of the class score well on tests</td>
<td>Chapters 1–10</td>
<td>Defining successful teaching as having students who reason mathematically, exhibit perseverance in solving problems, communicate their ideas, and develop long-term knowledge and skills in using mathematics</td>
</tr>
</tbody>
</table>