

Talking About Fractions: Helping All Students Engage in Mathematical Discourse

Have you ever heard....

Yours is not to reason why, just invert and multiply!

8th Grade, NAEP 2007

In which of the following are the three fractions arranged from least to greatest?

A.
$$\frac{2}{7}, \frac{1}{2}, \frac{5}{9}$$

B.
$$\frac{1}{2}, \frac{2}{7}, \frac{5}{9}$$

C.
$$\frac{1}{2}, \frac{5}{9}, \frac{2}{7}$$

D.
$$\frac{5}{9}, \frac{1}{2}, \frac{2}{7}$$

E.
$$\frac{5}{9}, \frac{2}{7}, \frac{1}{2}$$

8th Grade, NAEP 2007

In which of the following are the three fractions arranged from least to greatest?

Just under one half of students tested chose the correct response.

B.
$$\frac{-}{2}, \frac{-}{7}, \frac{-}{9}$$

E.
$$\frac{3}{9}, \frac{2}{7}, \frac{1}{2}$$

c.
$$\frac{1}{2}, \frac{5}{9}, \frac{2}{7}$$

If we want students to talk...

we have to give them something to talk about!

Standards for Mathematical Practice

- Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.

- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

Standards for Mathematical Content (CCSS)

Grade 3: Number and Operations – Fractions

Develop understanding of fractions as numbers.

Standards for Mathematical Content (CCSS) Grade 4: Number and Operations – Fractions

Extend understanding of fraction equivalence and ordering.

Build fractions from unit fractions by **applying and extending previous understandings** of operations on whole numbers.

Understand decimal notation for fractions, and compare decimal fractions.

©Standards for Mathematical Content (CCSS) Grade 5: Number and Operations – Fractions

Use equivalent fractions as a **strategy** to add and subtract fractions.

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

(Standards for Mathematical Content (CCSS) Grade 6: The Number System

Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

Apply and extend previous understandings of numbers to the system of rational numbers.

Standards for Mathematical Content (CCSS) Grade 7: The Number System

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

(Standards for Mathematical Content (CCSS) Grade 8: The Number System

Know that there are numbers that are not rational, and **approximate** them by rational numbers.

Strategies for supporting talk

Building visual models

12-cm Number Lines

Identifying the Unit Interval

Find a rod that fits on the number line exactly two times.

Partitioning the Number Lines

Reasoning with the number line

- Why are sixths smaller than fourths?
- What numbers are the same distance from zero as two-thirds?
- What number is halfway between zero and onehalf?
- What would you call a number halfway between zero and one-twelfth?

Strategies for supporting talk

- Building visual models
- Reasoning with benchmarks

What do you notice about all of the fractions that equal ½?

Jot down three statements and share with your neighbor

Which is Greater?

<u>5</u>

<u>5</u>

12

8

math reasoning inventory. com

Watch Alberto

https://mathreasoninginventory.com/Home/Practice

Fractions — Alberto

Which is Greater?

<u>3</u>

5

8

6

mathreasoninginventory.com

Watch Malcolm

https://mathreasoninginventory.com/Home/VideoLibrary

Addition:

Will the answer be greater than or less than 1?

$$\frac{11}{12} + \frac{1}{5} =$$

mathreasoninginventory.com

Alberto

https://mathreasoninginventory.com/Home/VideoLibrary

Turn and Talk

How did the students' reasoning with benchmarks support talk?

Strategies for supporting talk

- Building visual models
- Reasoning with benchmarks
- Strategic tasks

Order the following fractions from least to greatest.

<u>7</u>

7

<u>7</u>

8

2 ⁵

9

13

4

Video not available

Comparing 5/9 to 1/2

"Since 9 is an odd number I found it hard to compare it (5/9) to ½, so I multiplied 9 and 5 by 2 to get 10/18, and half of 18 is 9 and 10 is more than 9."

Turn and Talk

How did the numbers in the task encourage Jonah's reasoning and talk?

Strategies for supporting talk

- Building visual models
- Reasoning with benchmarks
- Strategic tasks
- Teacher moves

Which is a better choice, $\frac{3}{5}$ or $\frac{7}{8}$, for the location marked A on the number line?

Placing Fraction on a Number Line

Clip 5.2 from *Classroom Discussions: Seeing Math Discourse in Action*, by Nancy Anderson, Suzanne Chapin, and Cathy O'Connor, Math Solutions, 2011

Turn and Talk

How did the teacher's moves encourage talk?

Strategies for supporting talk

- Building visual models
- Reasoning with benchmarks
- Strategic tasks
- Teacher moves
- Records of thinking

Multiplication

James baked three batches of cookies. He used ¾ cup of sugar in each batch. How much sugar did he use?

mathreasoninginventory.com

Video not available

Understanding Multiplication

Division

I bought 2 ½ pounds of hamburger meat. Each hamburger uses ¼ of a pound. How many hamburgers can I make?

mathreasoninginventory.com

Video not available

Understanding Division

Turn and Talk

How did the students' records of thinking support talk?

Strategies for supporting talk

- Building visual models
- Reasoning with benchmarks
- Strategic tasks
- Teacher moves
- Records of thinking

In Conclusion

"My definition of a good teacher has changed from "one who explains things so well that students understand" to "one who gets students to explain things so well that they can be understood."

> Steven C. Reinhart, "Never Say Anything a Kid Can Say!" Mathematics Teaching in the Middle School 5, 8 [2000]: 478

http://mathreasoninginventory.com

Find Out What Math Reasoning Inventory **Your Students Really Understand About Math**

Math Reasoning Inventory (MRI) is a FREE online formative assessment tool that focuses on students' numerical reasoning strategies and understandings. MRI addresses the basics that students need to be prepared for middle school math and algebra.

- Includes three Assessments—Whole Numbers. Decimals, and Fractions.
- Developed by Marilyn Burns and a team of Math Solutions master teachers.
- Asks guestions that the Common Core expects all middle school students to answer successfully.

Common Core Connection

The emphasis on numerical reasoning relates directly to the processes and proficiencies in the eight Standards for Mathematical Practice

- The content of the questions graw from three domains in the Standards for Mathematical Content Operations & Algebraic Thinking, Number & Operations in Base Ten, and Number & Operations-Fractions.
- MRI responds to the Common Core recommendation for "a balanced combination of procedures and understanding:"
- MRI directly addresses the Common Core caution. that "students who lack understanding of a topic may rely on procedures too heavily."

Download Chapter 2 from Beyond Pizzas & Pies

http://store.mathsolutions.com/

Thank you!

Julie McNamara #209

jmcnamara@mathsolutions.com mathsolutions.com/presentations

mathsolutions.com 800.868.9092 info@mathsolutions.com

12-cm Number Lines

Name: ______ Date: _____

0	1	
•		
0	1	
		•
0 ←	1	
0	1	
0	1	
		
0	1	

1. Circle all the fractions that equal ½ and write them below:

2. What do you notice about their numerators and denominators?

3. What are some other fractions that equal $\frac{1}{2}$?

JMcNamara

Which is a better choice, $\frac{3}{5}$ or $\frac{7}{8}$, for the location marked A on the number line?

