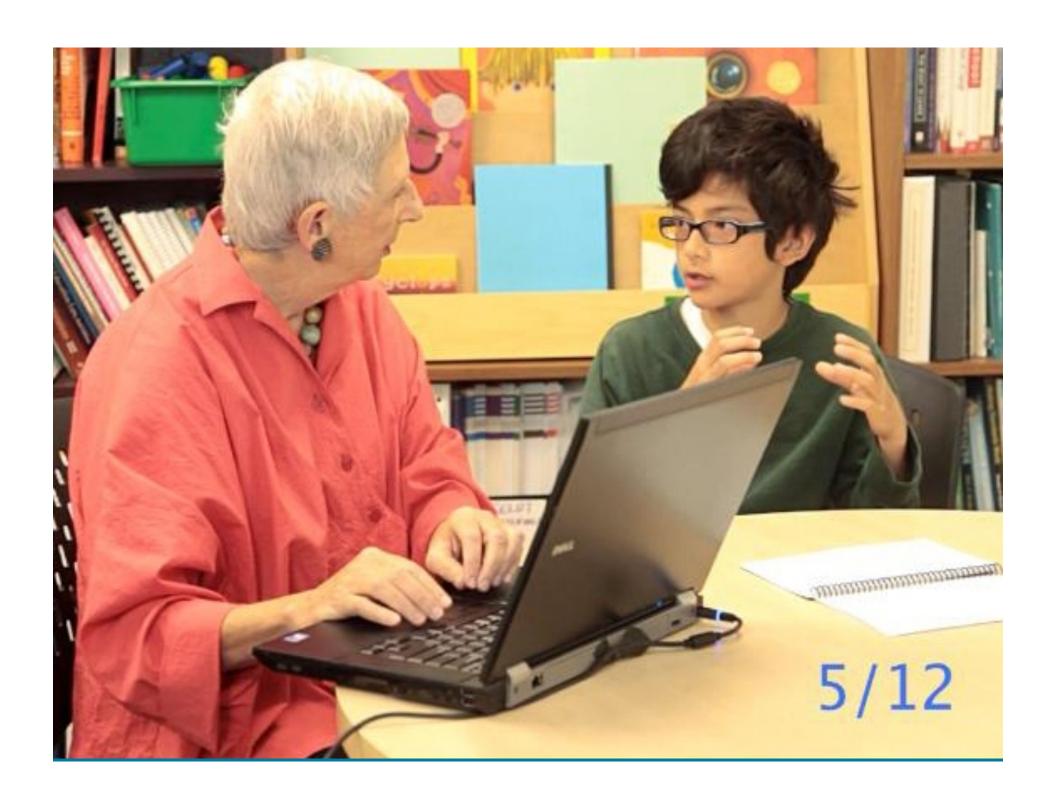
Lessons Learned from Interviews about Numerical Reasoning

Marilyn Burns

NCTM 2013, Denver, CO Thursday, April 18, 2013 11 am-noon

MRI Math Reasoning Inventory


Find out what students really understand about math

Funded by the Bill & Melinda Gates Foundation

Connecting MRI and Classroom Instruction

So... what is MRI?

MRI

Formative assessment tool

"When the cook tastes the soup, it's Formative Assessment. When the guest tastes the soup, it's Summative Assessment."

Jeane M. Joyner and Mari Muri. 2011. INFORMative Assessment. Sausalito, CA: Math Solutions Publications. [Robert Stake. 2004. Standards-Based and Responsive Evaluation. Thousand Oaks, CA: Sage Publications.]

MRI

- Formative assessment tool
- Addresses the Common Core

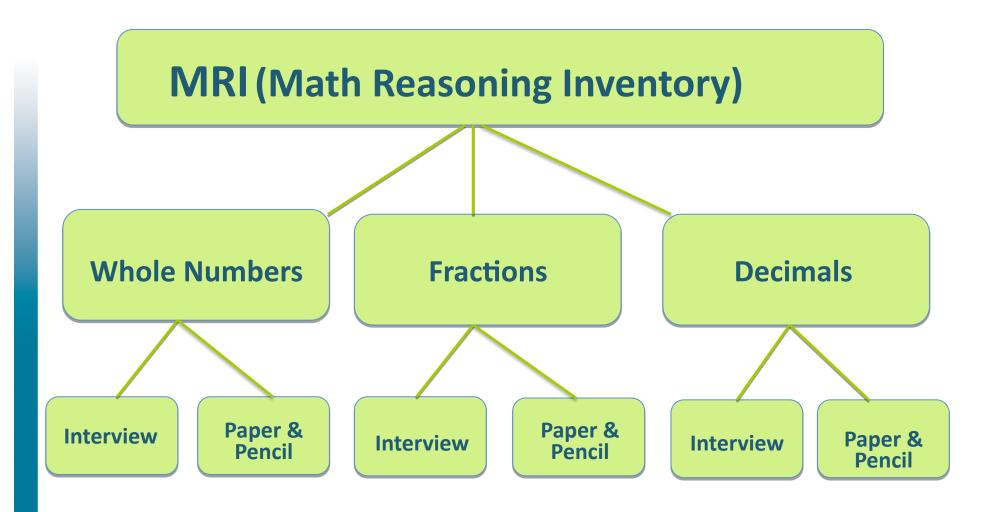
MRI asks questions that the Common Core expects all students entering middle school to be able to answer successfully.

15% & 20% TIP TABLE®

Check	15%	20%	Check	15%	20%
\$1.00	\$.15	\$.20	\$26.00	\$3.90	\$5.20
2.00	.30	.40	27.00	4.05	5.40
3.00	.45	.60	28.00	4.20	5.60
4.00	.60	.80	29.00	4.35	5.80
5.00	.75	1.00	30.00	4.50	6.00
6.00	.90	1.20	31.00	4.65	6.20
7.00	1.05	1.40	32.00	4.80	6.40
8.00	1.20	1.60	33.00	4.95	6.60
9.00	1.35	1.80	34.00	5.10	6.80
10.00	1.50	2.00	35.00	5.25	7.00
11.00	1.65	2.20	36.00	5.40	7.20
12.00	1.80	2.40	37.00	5.55	7.40
13.00	1.95	2.60	38.00	5.70	7.60
14.00	2.10	2.80	39.00	5.85	7.80
15.00	2.25	3.00	40.00	6.00	8.00
16.00	2.40	3.20	41.00	6.15	8.20
17.00	2.55	3.40	42.00	6.30	8.40
18.00	2.70	3.60	43.00	6.45	8.60
19.00	2.85	3.80	44.00	6.60	8.80
20.00	3.00	4.00	45.00	6.75	9.00
21.00	3.15	4.20	46.00	6.90	9.20
22.00	3.30	4.40	47.00	7.05	9.40
23.00	3.45	4.60	48.00	7.20	9.60
24.00	3.60	4.80	49.00	7.35	9.80
25.00	3.75	5.00	50.00	7.50	10.00

MRI

- Formative assessment tool
- Addresses the Common Core
- Reveals what students do know, do not know, and should know



MRI

- Formative assessment tool
- Addresses the Common Core
- Reveals what students do know, do not know, and should know
- Available online, free of charge, to all teachers

MRI (Math Reasoning Inventory) Whole Numbers Fractions Decimals

MRI provides instant reports

- Inform instruction
- Monitor progress
- Identify students in need of intervention
- Communicate with parents

Individual Report: Whole Numbers

MR, E

Legend

Appropriate for the numbers at hand

Not Appropriate for the numbers at hand

Interview

Date Completed: 17-Nov-2011

Category	Strategies or Understandings Demonstrated	Appropriate Strategies or Understandings Not Demonstrated	
Adding and Subtracting Mentally 100 – 18 Gives other reasonable explanation 1000 – 998 Uses standard algorithm to add or subtract 99 + 17		Uses addition to solve subtraction problems Uses benchmark numbers to add or subtract	
Multiplying and Dividing Mentally	 Uses known facts and place value to multiply or divide 7000 ÷ 70 Breaks numbers apart to multiply or divide 15 × 12 Gives other reasonable explanation 60 × 40 Guesses, does not explain, or gives faulty explanation Estimate 18 × 21 	Uses benchmark numbers to make estimates	
Applying Understanding	Uses distributive property 15 × 12 20 × 15 = 300, 21 × 15 =	Models with mathematics to solve problems in context Uses inverse relationship of addition and subtraction	

Written Computation

Date Completed: 17-Nov-2011

Category	Demonstrated	Not Demonstrated
Computing Accurately with Paper and Pencil	5000 – 328 842 × 35 3423 ÷ 6 275 ÷ 22	

Group Report: Whole Numbers

All Students

Start Date: 15-Aug-2011 End Date: 25-Nov-2011

Legend

Appropriate for the numbers at hand

Not Appropriate for the numbers at hand

Interview

Students: 8

Category	Consistently Demonstrated (75–100% of Students)	Often Demonstrated (50–74% of Students)	Sometimes Demonstrated (25–49% of Students)	Rarely Demonstrated (0–24% of Students)
Adding and Subtracting Mentally	Breaks numbers apart to add or subtract (75%)	Uses benchmark numbers to add or subtract (62%) Uses standard algorithm to add or subtract (50%)	Uses addition to solve subtraction problems (38%)	Gives other reasonable explanation (12%) Counts by 1s (12%)
Multiplying and Dividing Mentally		Uses known facts and place value to multiply or divide (50%) Breaks numbers apart to multiply or divide (50%) Gives other reasonable explanation (50%) Uses standard algorithm to multiply or divide (62%)	Uses benchmark numbers to make estimates (25%) Figures exact answer when asked to estimate (25%)	
Applying Understanding		Uses distributive property (62%) Models with mathematics to solve problems in context (50%)	Uses inverse relationship of addition and subtraction (38%)	

$Written\ Computation$

Students: 7

Category	75–100% of Students	50-74% of Students	25–49% of Students	0-24% of Students
Computing Accurately with Paper and Pencil	5000 – 328 (86%) 842 × 35 (86%) 3423 ÷ 6 (86%)	275 ÷ 22 (71%)		

Item Analysis: Whole Numbers

Period 1

Start Date: 30-Sep-2011 End Date: 28-Oct-2011

Legend

Appropriate for the numbers at hand

Not Appropriate for the numbers at hand

Interview

Students: 7

	Question	Correct / Self-corrected	Incorrect	Did Not Answer	Strategies Used by Students Who Gave Correct Answers
1	1000 – 998	100%	0%	0%	 Uses addition to solve subtraction problems (6/7) Guesses, does not explain, or gives faulty explanation (1/7)
2	99 + 17	43%	57%	0%	Breaks numbers apart to add or subtract (1/3) Uses standard algorithm to add or subtract (2/3)
3	100 – 18	57%	29%	14%	Breaks numbers apart to add or subtract (2/4) Uses standard algorithm to add or subtract (1/4) Counts by 1s (1/4)
4	15 + = 200	71%	14%	14%	Breaks numbers into parts to add or subtract (4/5) Uses standard algorithm to add or subtract (1/5)
5	20 × 15 = 300, 21 × 15 =	0%	43%	57%	No correct answers given
6	60 × 40	43%	57%	0%	 Uses known facts and place value to multiply or divide (3/3)
7	15 × 12	29%	43%	29%	Uses standard algorithm to multiply or divide (2/2)
8	7000 ÷ 70	57%	14%	29%	Uses known facts and place value to multiply or divide (4/4)
9	Estimate 18 × 21	57%	43%	0%	 Relates to benchmark number to make estimates (1/4) Figures exact answer when asked to estimate (1/4) Guesses, does not explain, or gives faulty explanation (2/4)
10	295 students, 25 on each bus	0%	43%	57%	No correct answers given

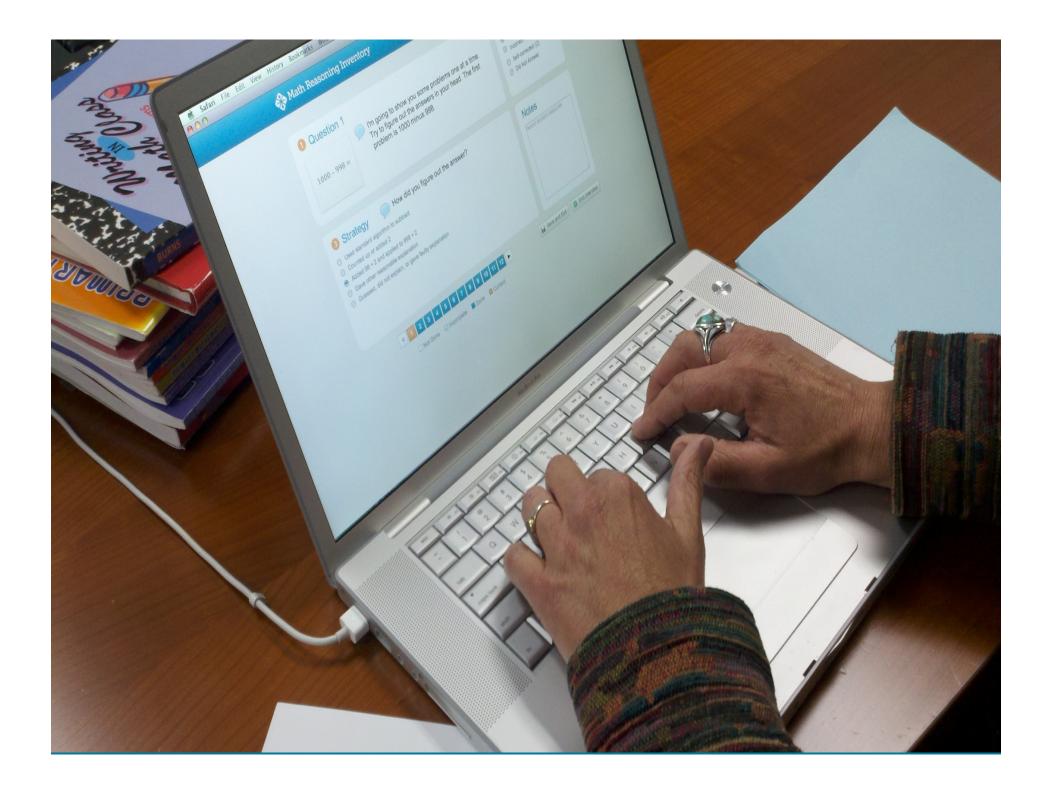
Written Computation

Students: 7

	Question	Correct / Self-corrected	Incorrect	Did Not Answer
1	5000 – 328	100%	0%	0%
2	842 × 35	57%	29%	14%
3	3423 ÷ 6	71%	14%	14%
4	275 ÷ 22	0%	43%	57%

Reasoning is the heart of MRI.

The *Interview* is the core of MRI.


- We ask . . .
- We listen . . .
- We learn . . .

MRI and Classroom Instruction

- 1. 99 + 17 Number Talk
- 2. Introducing Multiplication
- 3. 15 x 12 and the Distributive Property
- 4. 12.6 x 10
- 5. MRI K-5
- 6. A Math Investigation

What is 99 plus 17?

99 + 17

- Correct (116)
- Self-corrected (116)
- Did Not Answer

How did you figure out the answer?

- Counted on by 1s
- Used standard algorithm to add
- Added 90 + 10, 9 + 7, and then 100 + 16
- Added 99 + 10 and then 109 + 7
- Added 100 + 17 and then subtracted 1
- Changed problem to 100 + 16
- Gave other reasonable explanation
- Guessed, did not explain, or gave faulty explanation

Not Done

ncomplete

Done Current

Notes

record student response

End Interview

Lauren/Alessandra

99+10=109 109+7=116

Dylan 100+17=117 117-1=116

Caleb 99 is 1 less than 100. 17-1=16 99+1=100 100+16=116

Jake

9 plus any number is 1 less than the number you had.
(9+7=16)
6 is 1 less than the

The answer had to end in 6.

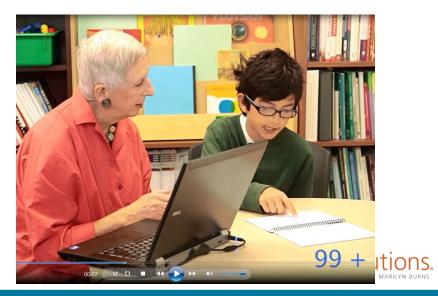
So I knew the answer had to be 116.

Eliane

9+7=16 90+10=100 16+100=116

Lindsay 9+7=16 16+10=26 90+26=116

2 90+17=107



Alberto

Manuel

Alberto

• Video of Alberto solving 99 + 17 on MRI site

Lauren/Alesandra

99+10=109

Dylan 100+17=117 117-1=116

Caleb 99 is 1 less than 100. 17-1=16 99+1=100 100+16=116

Jake

9 plus any number is 1 less than the number you had.
(9+7=16)
6 is 1 loss than the?

The answer had to end in 6.

So I knew the answer had to be 116.

Eliane

9+7=16 90+10=100 16+100=116

Lindsay 9+7=16 16+10=26 90+26=116

2 90+17=107 107+9=116

Manuel

• Video of Manuel solving 99 + 17 on MRI site

Lauren/Alesandra

99+10=109 109+7=116

Dylan 100+17=117 117-1=116

Caleb 99 is 1 less than 100. 17-1=16 99+1=100 100+16=116

Jake

9 plus any number is 1 less than the number you had.
(9+7=16)
6 is 1 loss than the?

The answer had to end in 6.

So I knew the answer had to be 116.

2 90+17=107 107+9=116

Eliane

9+7=16 90+10=100 16+100=116

 $\begin{array}{c}
\text{Lindsay} \\
9+7=16 \\
16+10=26 \\
90+26=116
\end{array}$

Dina

• Video of Dina solving 99 + 17 on MRI site

Lauren/Alessandra

99+10=109 109+7=116

Dylan 100+17=117 117-1=116

Caleb 99 is 1 less than 100. 17-1=16 99+1=100 100+16=116 Jake

9 plus any number is 1 less than the number you had.
(9+7=16)
6 is 1 less than the first han the 1

The answer had to end in 6.

So I knew the answer had to be 116.

Eliane

9+7=16 90+10=100 16+100=116

Lindsay 9+7=16 16+10=26 90+26=116

2 90+17=107

Amir

• Video of Amir solving 99 + 17 on MRI site

Lauren/Alessandra

99+10=109 109+7=116

Dylan 100+17=117 117-1=116

Caleb 99 is 1 less than 100. 17-1=16 99+1=100 100+16=116

Jake

9 plus any number is 1 less than the number you had.
(9+7=16)
6 is 1 less than the

The answer had to end in 6.

So I knew the answer had to be 116.

Eliane

9+7=16 90+10=100 16+100=116

Lindsay 9+7=16 16+10=26 90+26=116

2) 90+17=107

Common Core Connection

Grade 3

Number and Operations in Base Ten

Use place value understanding and properties of operations to perform multi-digit arithmetic.

CCSS.Math.Content.3.NBT.A.2 Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Standards for Mathematical Practice

- Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

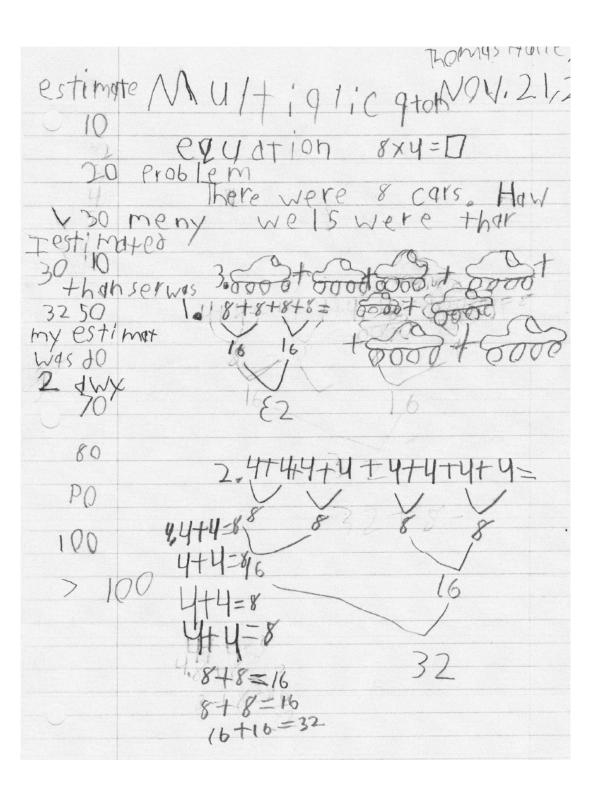
Using MRI in Classroom Instruction

- 1. 99 + 17 Number Talk
- 2. Teaching Multiplication
- 3. 15 x 12 and the Distributive Property
- 4. 12.6 x 10
- 5. MRI K-5
- 6. An Investigation

Teaching Arithmetic INTRODUCING MULTIPLICATION, Grade 3

Chapter Four: Multiplication Stories


```
Equation: 7×3=
 Estimate
 V10
                  Problem: There are 7 tricycles.
 V20
                               How many wheels are
there altogether?
 V30
 V 40
   50
              Figuring
   60
                                    (000)(000)
   70
   80
                2. 3,6,9,12,15,18,21
   90
                3. 3×3=9 (3 tricycles).
3×3=9 (3 more tricycles)
9+9=18 (6 tricycles)
   100
more than 100
                      18+3 = 21
                     3+3+3+3+3+3+3
                                                 12+9=21
                       7×3=21
```


```
Multiplication

Estimate Equation: 8 \times 4 = \square

10
20
Problem:
30
40
50
Figuring:
60
70
80
90
100
7100
```

There was the usual confusion that happens when students do anything for the first time.

Estimate 8x431 Problem There was 8 dogs and by all had 4 legs. How many legs all Fogether . 188 08 00 0 0 0 0 0 0 00 00 950 60 90 norethan 2

Novilly 2000 8x4=1 Estimate Wete dimend. How many bases Figuring 40 Multipling 50 00 000 00 x8=31 in all 60 70 80 90 100 problem the ansut. * My estamate was

Standards for Mathematical Practice

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Multiplication, Grade 3

Introduction

Students develop an understanding of the meaning of multiplication and division of whole numbers through activities and problems involving equal-sized groups, arrays, and area models.

Common Core: Multiplication, Grade 3

Operations & Algebraic Thinking

Represent and solve problems involving multiplication and division.

- OA.A.1 **Interpret products** of whole numbers; e.g., interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each. *For example, describe a context in which a total number of objects can be expressed as 5 x 7.*
- OA.A.3 Use multiplication and division within 100 to **solve word problems** in situations involving equal groups, arrays, and measurement quantities; e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
- OA.A.4 **Determine the unknown** whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48$, $5 = _ \div 3$, $6 \times 6 = ?$ Math Solution

Using MRI in Classroom Instruction

- 1. 99 + 17 Number Talk
- 2. Teaching Multiplication
- 3. 15 x 12 and the Distributive Property
- 4. 12.6 x 10
- 5. MRI K-5
- 6. An Investigation

Grade 4

Number and Operations in Base Ten

Use place value understanding and properties of operations to perform multi-digit arithmetic.

CCSS.Math.Content.4.NBT.B.5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations.

Grade 4

Number and Operations in Base Ten

Use place value understanding and properties of operations to perform multi-digit arithmetic.

CCSS.Math.Content.4.NBT.B.5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations.

Distributive Property of Multiplication over Addition

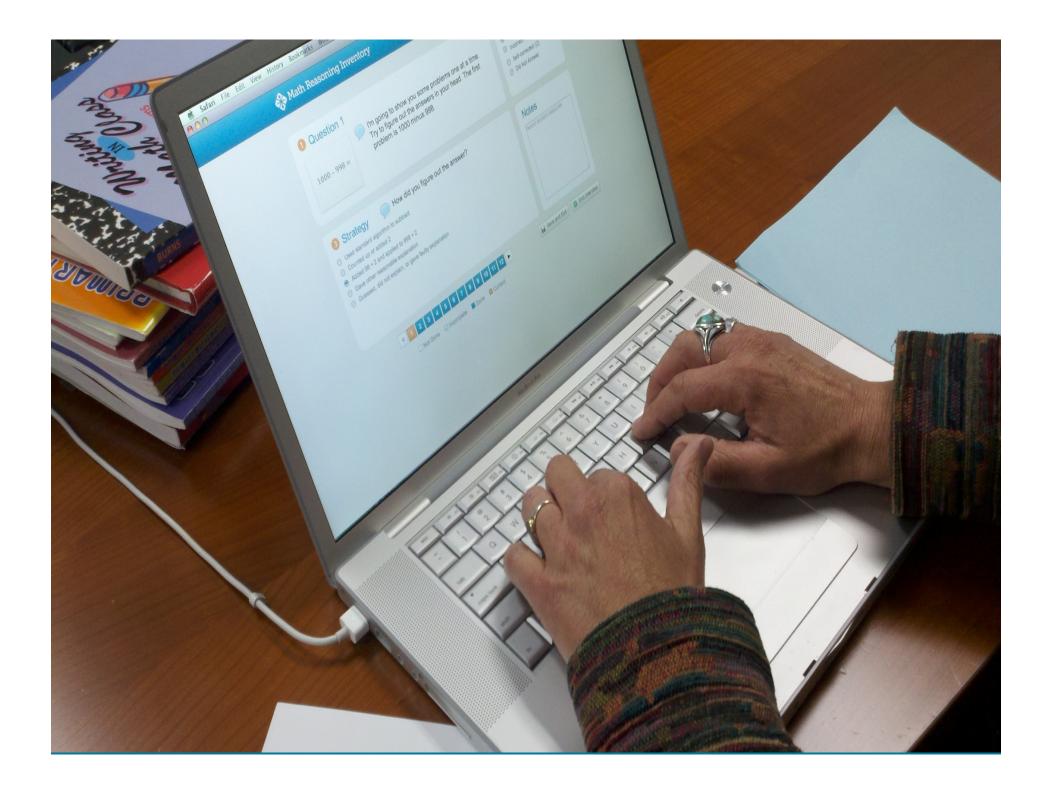
Grade 5

Operations & Algebraic Thinking

Write and interpret numerical expressions.

<u>CCSS.Math.Content.5.OA.A.1</u> Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

CCSS.Math.Content.5.OA.A.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as 18932 + 921, without having to calculate the indicated sum or product. Math Solutions


Grade 6

Expressions & Equations

Apply and extend previous understandings of arithmetic to algebraic expressions.

CCSS.Math.Content.6.EE.A.3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

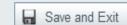
What is 15 times 12?

 $15 \times 12 =$

- Answer
- Correct (180)
- O Incorrect
- Self-corrected (180)
- O Did Not Answer

Explanation

How did you figure out the answer?


- Used standard algorithm to multiply
- Broke 15 and/or 12 into parts and then multiplied (e.g., 15 x 10 and then 15 x 2)
- Changed to an easier problem, 30 x 6, by doubling and halving
- Gave other reasonable explanation
- Guessed, did not explain, or gave faulty explanation

Notes

☐ Not Done ☐ Incomplete ☐ Done ☐ Current

15 x 12

15 x 12

Monica

Malcolm

Alberto

Monica: 15 x 12

Video on MRI site

Monica: 15 x 12

"I did 15 times 10 and it was 150.

And then I did 15 times 2 which is 30.

And it was . . . um . . . 180."

Monica: 15 x 12

"I did 15 times 10 and it was 150.

And then I did 15 times 2 which is 30.

And it was . . . um . . . 180."

$$12 = 10 + 2$$

$$15 \times 2 = 30$$

$$150 + 30 = 180$$

Malcolm: 15 x 12

Video on MRI site

Malcolm: 15 x 12

"I broke apart the 15 and did 10 plus 5.

And then I did 10 times 12 which equals 120.

And then I did 12 times 5 which equals 60

And then I added it all together and I got 180."

Malcolm: 15 x 12

"I broke apart the 15 and did 10 plus 5.

And then I did 10 times 12 which equals 120.

And then I did 12 times 5 which equals 60

And then I added it all together and I got 180."

$$15 = 10 + 5$$

$$10 \times 12 = 120$$

$$12 \times 5 = 60$$

$$120 + 60 = 180$$

Alberto: 15 x 12

Video on MRI site

Alberto: 15 x 12

"I did 12 times 12 is 144

And then I did 3 times 12 and I got 36

And then I did 144 plus 36."

Alberto: 15 x 12

"I did 12 times 12 is 144
And then I did 3 times 12 and I got 36
And then I did 144 plus 36."

$$15 = 12 + 3$$

$$12 \times 12 = 144$$

$$3 \times 12 = 36$$

$$144 + 36 = 180$$

15 x 12

Monica

 $(15 \times 10) + (15 \times 2) = 180$

Malcolm

 $(10 \times 12) + (12 \times 5) = 180$

Alberto

 $(12 \times 12) + (3 \times 12) = 180$

Standards for Mathematical Practice

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

15 x 12

Monica

Malcolm

Alberto

Cecilia

Cecilia: 15 x 12

Video on MRI site

Cecilia: 15 x 12

"First I'm breaking it into steps and I'm doing 5 times 2. I leave the zero here and I bring the 1 up here.

Then 2 times 1 is 2, plus 1 is 3, so that's 30.

Put a zero. Five times 1 is 5, and then 1 x 1 is 1.

So then the answer is 180."

15

x 12

30

150

180

Grade 5

Number and Operations in Base Ten

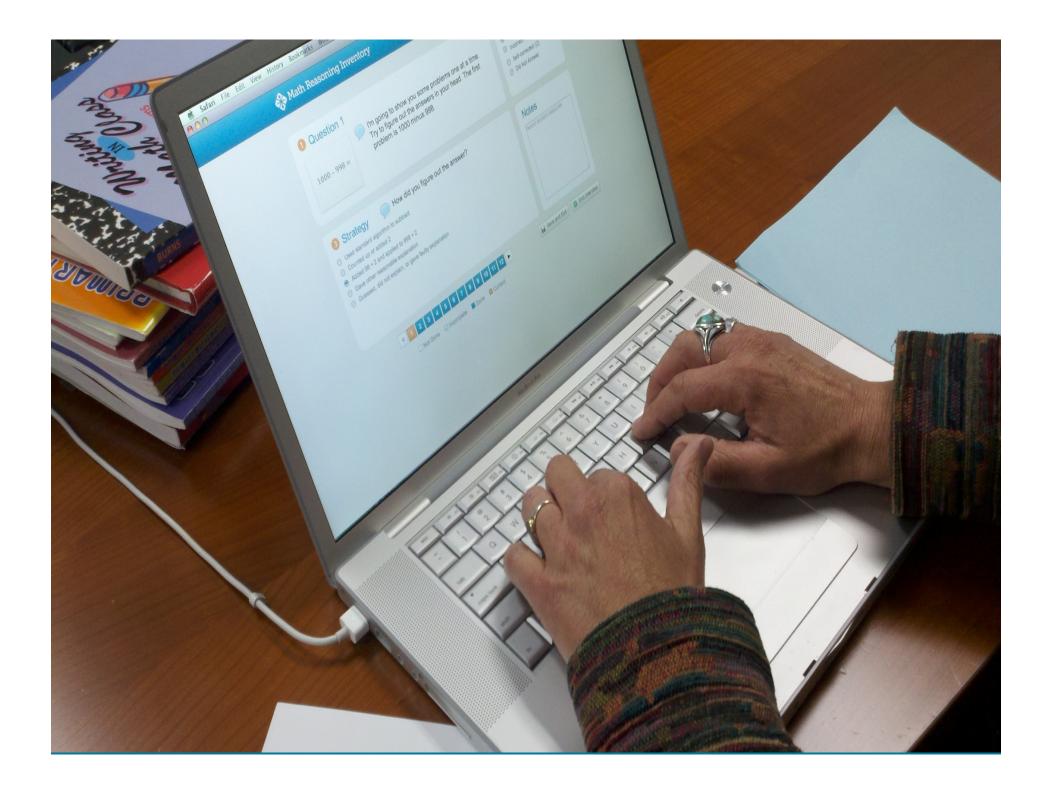
Perform operations with multi-digit whole numbers and with decimals to hundredths.

<u>CCSS.Math.Content.5.NBT.B.5</u> Fluently multiply multidigit whole numbers using the standard algorithm.

Common Core Recommendation:

... a "balanced combination of procedures and understanding."

Common Core Caution:


... "students who lack understanding of a topic may rely on procedures too heavily."

Using MRI in Classroom Instruction

- 1. 99 + 17 Number Talk
- 2. Teaching Multiplication
- 3. 15 x 12 and the Distributive Property
- 4. 12.6 x 10
- 5. MRI K-5
- 6. An Investigation

Ath Reasoning Inventory

Molly Problem

Molly ran 1.5 miles each day for 20 days. How many miles did she run altogether?

Common Core Connection

Grade 5

Number and Operations in Base Ten

Perform operations with multi-digit whole numbers and with decimals to hundredths.

CCSS.Math.Content.5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Molly Problem

Molly ran 1.5 miles each day for 20 days. How many miles did she run altogether?

$$20 \times 1.5 =$$

 $20 \times 1.5 =$ ____

How would you figure out the answer using the Distributive Property of Multiplication over Addition?

Sergio: Molly problem, 20 x 1.5

Video on MRI site

Sergio: Molly problem, 20 x 1.5

"I know that 20 times 1 is 20, so I put the 20 aside. And 20 times 5 is 100, and bloop it by one is just zero . . . 10.0. So 20 plus 10 is 30."

$$20 \times 1 = 20$$

$$20 \times 5 = 100$$
, so $20 \times .5$ is 10.0

$$20 + 10 = 30$$

$$20 \times 1.5 = (20 \times 1) + (20 \times .5)$$

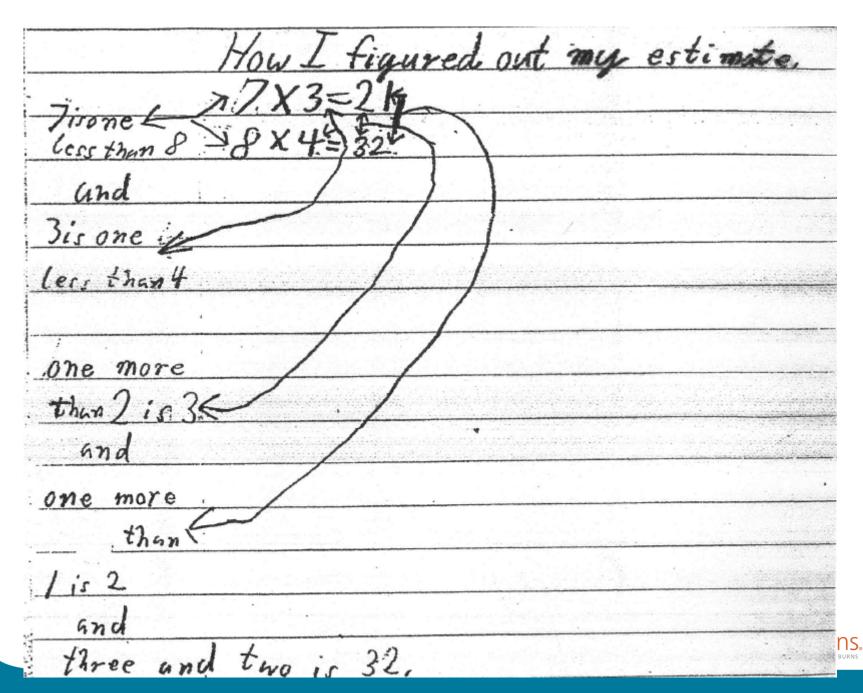
Using MRI in Classroom Instruction

- 1. 99 + 17 Number Talk
- 2. Teaching Multiplication
- 3. 15 x 12 and the Distributive Property
- 4. 12.6 x 10
- 5. MRI K-5
- 6. An Investigation

What we've learned from MRI

- MRI K-5
- Mental reasoning should be integral to math instruction
- Intervention is needed for students who need to catch up

Using MRI in Classroom Instruction


- 1. 99 + 17 Number Talk
- 2. Teaching Multiplication
- 3. 15 x 12 and the Distributive Property
- 4. 12.6 x 10
- 5. MRI K-5
- 6. An Investigation


```
Multiplication

Estimate Equation: 8 \times 4 = \square

10
20
Problem:
30
40
50
Figuring:
60
70
80
90
100
more than 100
```


$7 \times 3 = 21$ $8 \times 4 = 32$

7 X 3 = 21 8 X 4 = 32

6 X 2 =

$$7 X 3 = 21$$

$$8 X 4 = 32$$

```
6 \times 2 = 12
```

$$7 X 3 = 21$$

$$8 X 4 = 32$$

$$6 X 2 = 12 \\
7 X 3 = 23 \\
8 X 4 = 32$$

"Hey. It wouldn't work. I don't get it. It worked over here."

Teaching Arithmetic Lessons for INTRODUCING MULTIPLICATION, Grade 3 Chapter 4

"While her reasoning had no mathematical grounding, it worked in this particular instance."

7 X 3 = 21

8 X 4 = 32

www.mathreasoninginventory.com

800.868.9092 mri info@scholastic.com