

NWMC 2014 OCTOBER 10, 2014

NUMBER TALKS IN THE MIDDLE SCHOOL MATH CLASSROOM

Welcome Middle School Educators!

Standards for Mathematical Practice

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.

Math Solutions

- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

What is a Number Talk?

Math Solutions

- Number talks can be best described as classroom conversations around purposely crafted computation problems that are solved mentally.
- The problems in a number talk are designed to elicit specific strategies that focus on number relationships and number theory...
- By sharing and defending their solutions and strategies, students have the opportunity to collectively reason about numbers while building connections to key conceptual ideas in mathematics.

From Number Talks: Helping Children Build Mental Math and Computation Strategies, Grades K-5 by Sherry Parrish, page xviii

Common Core Standards for Mathematical Content

The Number System, 6-8: Overview

Math Solutions

SCHOLASTIC

In Grades 6–8, students build on two important conceptions which have developed throughout K–5, in order to understand the rational numbers as a number system.

The first is the representation of whole numbers and fractions as points on the number line,

and the second is a firm understanding of the properties of operations on whole numbers and fractions.

— Progressions for the Common Core State Standards in Mathematics, Number Sense, 6-8, www.commoncoretools.wordpress.com

Why "Middle School" Number Talks?

Examining Common Errors:

- 1. $\frac{3}{4} \frac{1}{2}$
- **2.** 5.40 × 0.15

- 3. -3 + -6
- 4. (x + 2)(x + 3)
- 5. True or False: $6 \times 99 = (6 \times 100) (6 \times 1)$ True or False: $99 \times 6 = (100 \times 6) - (1 \times 6)$

Session Goals

In this session we will:

Math Solutions

- Use models and tools that support student understandings and proficiencies called for in the Common Core State Standards
- Recognize and support students' understandings of the mathematical properties
- Share strategies in ways that emphasize the important mathematical ideas that are inherent in the strategies

Number Talk: Compute the Answer Mentally

16 × 35 =

Four Procedures and Expectations

Math Solutions⁻

- 1. Establish Number Talks as part of your math class routine.
- 2. Provide appropriate wait time for most students to access the problem.
- 3. Accept, respect, and consider all answers.
- 4. Encourage student communication.

Number Talks as a Vehicle for Computation Strategies

• Efficiency

SCHOLASTIC

Math Solutions

- the ability to choose an appropriate, expedient strategy
- Flexibility
 - the ability to use number relationships with ease in computation
- Accuracy
 - the ability to produce an accurate answer

Number Talk Student Responses

Omar	16	×	25
16 × 35 =	10		55
10 x 30 = 300			
6 x 5 = 30			
30 x 6 = 180			
$5 \times 10 = 50$			
300 + 180 + 30	+ 50=	•	
480 + 80 =	= 560		
(partial products	5)		Jarvis
			16
			8 × 2
16 × 35 =			4 × 2 ×
8 × 70 = 560			 2x2 x 2x
(doubling/halving)		
· · · ·	-		(prime ta

SCHOLASTIC

Sarah Grace 16 × 35 = 20 × 35 = 700 35 × 4 = 140 700 - 140 = 560 (friendly number)

Jarvis 16 × 35 = 8 × 2 7 × 5 4 × 2 ×2 × 7 × 5 2×2 × 2×2 × 7 × 5 = 560 (prime factorization)

Key Components of Number Talks

- Classroom environment and community
- Classroom discussions
- The teacher's role

Math Solutions

SCHOLASTIC

- The role of mental math
- Purposeful computation problems

16 × 35 Area Model

SCHOLASTIC

Math Solutions

35 Omar 30 5 16 ×35 = + $10 \times 30 = 300$ $6 \times 5 = 30$ 10 300 50 16 30 x 6 = 180 + $5 \times 10 = 50$ 180 30 6 300 + 180 + 30 + 50= 480 + 80 = 560 = 300 10×30 (partial products) $6 \times 5 = 30$ $30 \times 6 = 180$ 5×10 560

$$16 \times 35 = (10 + 6) \times (30 + 5)$$

= (10 × 30) + (6 × 5) + (30 × 6) + (5 × 10) = 560

Single Digit x Single Digit Arrays

SCHOLASTIC

Math Solutions

Concrete Model of 6 x 13

6

10 + 3

Representational Model

SCHOLASTIC

Math Solutions

Abstract Model

Compute 3 x 14

• Chrissy, Grade 4

٠

Number Talks In Response to Common Errors

1. $\frac{3}{4} - \frac{1}{2}$

SCHOLASTIC | Math Solutions

- **2.** 5.40 × 0.15
- 3. -3 + -6
- 4. (x + 2)(x + 3)

5. True or False: $6 \times 99 = (6 \times 100) - (6 \times 1)$

Using Partial Products Model to Solve (x + 2)(x + 3)

Number Talk: Compute the answer mentally

1. 3(x + 5)

- 2. (x + 3)x
- 3. (x + 3)(x + 5)

Number Talks In Response to Common Errors

1. $\frac{3}{4} - \frac{1}{2}$

- **2**. 5.40 × 0.15
 - 3. -3 + -6
 - 4. (x + 2)(x + 3)
 - 5. True or False: $6 \times 99 = (6 \times 100) (6 \times 1)$

"Estimation Task" Number Talk Please solve mentally then record each answer using paper and pencil:

1. 2376 ÷ 0.98

- 2. 32% of 647
- 3. 5.08 × 2.4

"Are These Answers Reasonable?" Number Talk

1. 8,638/7 = 123.4

Math Solutions

- **2.** 696/8 = 5,568
- **3.** 2,961/6 = 49.35

(from *Good Questions for Math Teaching,* by Lainie Schuster and Nancy Anderson p. 39)

https://www.mathreasoninginventory.com

...or search on-line for: "Math Reasoning Inventory"

Number Talks In Response to Common Errors

Strategies for Fraction Addition

3/4 From *Beyond Invert and Multiply* by Julie McNamara "Coming Soon" + 3/4

$$= 1/2 + 1/4 + 1/2 + 1/4$$

Math Solutions

Decomposition

of Fractions

$$= 1/2 + 1/2 + 1/4 + 1/4$$

Commutative

ιορειιγ

SCHOLASTIC |

$$=$$
 1 + 2/4 = 11/2

Associative Property Recomposition

Model for Fraction Addition

0 1 11/2

SCHOLASTIC

Math Solutions

Number Talks: Fraction Addition

1. 7/8 + 1/2 =

- 2. 3/4 + 5/16 =
- **3.** 23/8 + 33/4 =

Fraction Division Models

1. Fraction Strips

SCHOLASTIC | Math Solutions

2. Fractions on a Number Line

1. Fraction Strips Model

Connecting Fraction Division to Whole Number Division:

6÷2 =(how many 2s are in 6?)

SCHOLASTIC | Math Solutions

 $1/2 \div 1/8 = (\text{How many } 1/8 \text{ s are in } 1/2 ?)$

2. Number Line Model

SCHOLASTIC | Math Solutions

 $1/2 \div 1/8 = (\text{How many } 1/8 \text{ s are in } 1/2 ?)$

2. Number Line Model

SCHOLASTIC | Math Solutions

1/2 ÷ 1/8 = (How many 1/8 s are in 1/2?) 1 2 3 4

Number Talks: Dividing Fractions by Fractions

1. $1/2 \div 3/8 =$

- 2. $1/2 \div 1/3 =$
- **3**. 16/8 ÷ 1/4 =
- 4. $23/4 \div 1/8 =$

Number Talks In Response to Common Errors

1. $\frac{3}{4} - \frac{1}{2}$

- **2.** 5.40 × 0.15
- 3. -3 + -6
- 4. (x + 2)(x + 3)
- 5. True or False: (6 x 100) (6 x 1)

Strategies for Adding and Subtracting Integers

"Students understand 5 – 3 as the missing addend in

SCHOLASTIC

On the number lines, ..."

http://commoncoretools.me/wp-content/uploads/2013/07/ ccssm_progression_NS+Number_2013-07-09.pdf, pages 9-10

Strategies for Adding and Subtracting Integers

SCHOLASTIC | Math Solutions

"On the number lines, [3 + ? = 5] is represented as the distance from 3 to 5 or direction on the number line by saying how you get from 3 from 5; by going two units to the right."

http://commoncoretools.me/wp-content/uploads/2013/07/ ccssm_progression_NS+Number_2013-07-09.pdf, pages 9-10 Strategies for Adding and Subtracting Integers (-5) - (-3) = How to write as a missing addend?

(-3) + ? = (-5)

Math Solutions

SCHOLASTIC

Using a number line,

how do you get from -3 to -5?

Since -5 is two units to the left of -3 on the number line, the missing addend is -2.

http://commoncoretools.me/wp-content/uploads/2013/07/ccssm_progression_NS +Number_2013-07-09.pdf, page10

SCHOLASTIC ACHIEVEMENT PARTNERS* | Whath Solutions

3.
$$5 - (-2)$$

Why "Middle School" Number Talks? Examining Common Errors:

1. $\frac{3}{4} - \frac{1}{2}$

- **2.** 5.40 × 0.15
- 3. -3 + -6
- 4. (x + 2)(x+3)
- 5. True or False: $6 \times 99 = (6 \times 100) (6 \times 1)$

"True or False?" Number Talks

1. 5 X 1/9 = 4 x 1/9 + 1/9

2. 1/2(1 + 1/3) = 1/2 + 1/3

True or False?

3. $6 \times 1/3 = 1/6 + 1/6 + 1/6$

4. $9 \times 5/6 = (6 \times 5/6) + (3 \times 5/6)$

"True or False?" Number Talk

5.
$$3 \times -7 = (-7) + (-7) + (-7)$$

6.
$$-8 \times 6 = (-8 \times 5) + 6$$

7.
$$9 \times -7 = 10 \times -7 + 7$$

8.
$$-9 - 6 = -9 - (-6)$$

Session Goals

In this session we will:

Math Solutions

- Use models and tools that support student understandings and proficiencies called for in the Common Core State Standards
- Recognize and support students' understandings of the mathematical properties
- Share strategies in ways that emphasize the important mathematical ideas that are inherent in the strategies

What is a Number Talk?

Number Talks are a valuable classroom *routine* for:

- making sense of mathematics
- developing efficient computation strategies
- communicating reasoning
- and proving solutions

Number Relationships

Math Solutions

"When we ask students questions about relationships, properties, and procedures associated with number concepts, we help our students make important mathematical connections between numbers and their representations."

> From *Good Questions for Math Teaching* by Lainie Schuster and Nancy Canavan Anderson, page 17

Final Reflection

What impact might *Middle School Number Talks* have in *your* math classroom?

Thank You!

kcohen@mathsolutions.com